metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[[aqua(2,2-bipyridine)iron(II)]-µ₃pyridine-3,4-dicarboxylato] monohydrate]

Lu-Jiang Hao* and Tong-Li Yu

College of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China Correspondence e-mail: lujianghao001@yahoo.com.cn

Received 2 June 2007; accepted 12 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.037; *wR* factor = 0.108; data-to-parameter ratio = 11.2.

In the title complex, $\{[Fe(C_7H_3NO_4)(C_{10}H_8N_2)(H_2O)]\cdot H_2O\}_n$, the divalent iron cation is in the centre of a distorted octahedron formed by three N and three O atoms. Two N atoms belong to the chelating 2,2-bipyridine ligand and the third to the pyridine-3,4-dicarboxylate ligand, while the O atoms belong to monodentate carboxylate groups of two different pyridine-3,4-dicarboxylate ligands and to one water molecule. The connectivity between the Fe^{II} cations and the pyridine-3,4-dicarboxylate units gives rise to corrugated layers parallel to the *ab* plane. The water molecules of crystallization are located between the layers. Medium-strong $O-H\cdots O$ hydrogen bonds between the water molecules and the layers stabilize the structure.

Experimental

Crystal data [Fe(C₇H₃NO₄)(C₁₀H₈N₂)(H₂O)]--H₂O

 $M_r = 413.17$ Orthorhombic, *Pbca* a = 15.7231 (13) Å b = 12.630 (2) Å c = 16.522 (2) Å $V = 3281.1 (7) \text{ Å}^{3}$ Z = 8

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\min} = 0.910, \ T_{\max} = 0.910$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ wR(F²) = 0.109 S = 1.00 2870 reflections 257 parameters 6 restraints H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.46$ e Å⁻³

 $\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation

 $0.10 \times 0.10 \times 0.10$ mm

24153 measured reflections 2870 independent reflections

2330 reflections with $I > 2\sigma(I)$

 $\mu = 0.96 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.071$

Table 1

Selected bond lengths (Å).

Fe1-O1 ⁱ	2.1192 (19)	Fe1-N2	2.224 (2)
Fe1-O3	2.1478 (18)	Fe1-N3	2.313 (2)
Fe1-O6	2.194 (2)	Fe1-N1 ⁱⁱ	2.361 (2)

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O5−H4W···O4 ⁱⁱⁱ	0.824 (17)	2.02 (2)	2.827 (3)	168 (3)
$O5-H3W \cdot \cdot \cdot O2^{iv}$	0.838 (17)	1.942 (17)	2.779 (3)	176 (3)
$O6-H1W \cdot \cdot \cdot O5^{v}$	0.837 (17)	2.031 (18)	2.859 (3)	170 (4)

Symmetry codes: (iii) $-x + \frac{1}{2}, -y, z - \frac{1}{2}$; (iv) x, y, z - 1; (v) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2122).

References

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SAINT, SHELXTL (Version 5.10) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m1926 [doi:10.1107/S160053680702867X]

Poly[[[aqua(2,2-bipyridine)iron(II)]-#3-pyridine-3,4-dicarboxylato] monohydrate]

L.-J. Hao and T.-L. Yu

Comment

The molecular structure of the title compound is shown in Fig. 1. The Fe^{II} cation is in a distorted octahedral coordination by three O and three N atoms. The 2,2-bipyridine ligand provides two N atoms and the third N atom comes from the pyridine ring of the pyridine-3,4-dicarboxylate ligand. Two O atoms belong to the carboxylate groups of two different pyridine-3,4-dicarboxylate ligands and the third O atom is an aqua ligand. The Fe—O and Fe—N bond distances range from 2.1192 (19) to 2.194 (2) and from 2.224 (2) to 2.361 (2) Å, respectively. The connectivity between the Fe^{II} cations to three different pyridine-3,4-dicarboxylate ligands leads to the formation of corrugated layers parallel to the *ab* plane, as shown in Fig. 2. An additional sheet of water molecules is located between the polymeric layers. The structure is stabilized by medium-strong hydrogen bonds of the type O—H···O between the water molecules and the layers (Table 2).

Experimental

All chemicals were purchased from Acros without further purification. A mixture of FeCl₂ (98%, 0.5 mmol, 0.149 g), pyridine-3,4,-dicarboxylic acid (98%, 0.5 mmol, 0.162 g), and 2,2-bipyridine (98%, 0.5 mmol, 0.10 g) in a 20 ml mixture of water and ethanol (1:1) was sealed in an 30 ml Teflon-lined stainless autoclave, and kept at 423 K for 2 d. Colourless, block-shaped crystals of the title compound were obtained with an approximate yield of 20% after slowly cooling to room temperature. Anal. Calc. for $C_{17}H_{15}FeN_3O_6$: C 49.39, H 3.63, N 10.17, Fe 13.56%; Found: C 49.36, H 3.67, N 10.15, Fe 13.52%.

Refinement

The H atoms of the water molecules (except for HW2) were located from difference Fourier maps and were refined with distance restraints of d(H-H) = 1.38 (2) Å and d(O-H) = 0.83 (2) Å. All other H atoms were placed in calculated positions with a C–H bond distance of 0.93 Å (O–HW2 distance of 0.82 Å) and $U_{iso}(H) = 1.2U_{eq}$ of the respective carrier atom.

Figures

Fig. 1. A view of the coordination of the Fe^{II} cation in the structure of compound (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: I) -x + 1, -y, -z + 2.]

Fig. 2. two-dimensional wave-like layer of (I).

 $F_{000} = 1696$

 $\theta = 2.4-25.0^{\circ}$ $\mu = 0.96 \text{ mm}^{-1}$ T = 293 (2) KCube, colourless $0.10 \times 0.10 \times 0.10 \text{ mm}$

 $D_{\rm x} = 1.673 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

Cell parameters from 2870 reflections

Poly[[[aqua(2,2-bipyridine)iron(II)]-µ₃-pyridine-3,4-dicarboxylato] monohydrate]

Crystal data
$[Fe(C_7H_3NO_4)(C_{10}H_8N_2)(H_2O)] \cdot H_2O$
$M_r = 413.17$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
<i>a</i> = 15.7231 (13) Å
b = 12.630 (2) Å
c = 16.522 (2) Å
$V = 3281.1 (7) \text{ Å}^3$
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer	2870 independent reflections
Radiation source: fine-focus sealed tube	2330 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.071$
T = 293(2) K	$\theta_{\rm max} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$h = -18 \rightarrow 18$
$T_{\min} = 0.910, \ T_{\max} = 0.910$	$k = -15 \rightarrow 15$
24153 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.109$	$w = 1/[\sigma^2(F_o^2) + (0.073P)^2 + 0.2586P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
2870 reflections	$\Delta \rho_{max} = 0.46 \text{ e } \text{\AA}^{-3}$
257 parameters	$\Delta \rho_{\rm min} = -0.68 \ {\rm e} \ {\rm \AA}^{-3}$
6 restraints	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe1	0.43846 (2)	0.18949 (3)	0.93122 (2)	0.02606 (16)
C1	0.33340 (16)	-0.0122 (2)	0.94563 (16)	0.0223 (6)
C2	0.29361 (15)	-0.10090 (19)	0.99332 (15)	0.0202 (5)
C3	0.31859 (16)	-0.1280 (2)	1.07044 (15)	0.0227 (6)
C4	0.38443 (16)	-0.0688 (2)	1.11962 (15)	0.0246 (6)
C5	0.27582 (17)	-0.2132 (2)	1.10595 (17)	0.0299 (6)
Н5	0.2920	-0.2357	1.1573	0.036*
C6	0.20945 (18)	-0.2652 (2)	1.06631 (17)	0.0306 (7)
H6	0.1829	-0.3217	1.0922	0.037*
C7	0.22564 (16)	-0.1578 (2)	0.95950 (16)	0.0237 (6)
H7	0.2085	-0.1381	0.9078	0.028*
C8	0.47919 (18)	0.4002 (2)	0.82369 (17)	0.0318 (6)
H8	0.4357	0.3750	0.7907	0.038*
С9	0.52747 (19)	0.4850 (2)	0.79578 (18)	0.0346 (7)
Н9	0.5158	0.5159	0.7459	0.042*
C10	0.5923 (2)	0.5219 (3)	0.84312 (19)	0.0435 (8)
H10	0.6261	0.5780	0.8260	0.052*
C11	0.6062 (2)	0.4748 (3)	0.91530 (19)	0.0414 (8)
H11	0.6506	0.4979	0.9481	0.050*
C12	0.55395 (16)	0.3913 (2)	0.94102 (16)	0.0244 (6)
C13	0.56429 (15)	0.3397 (2)	1.01905 (16)	0.0234 (6)
C14	0.61829 (18)	0.3804 (2)	1.07782 (17)	0.0325 (7)
H14	0.6500	0.4412	1.0680	0.039*
C15	0.6237 (2)	0.3293 (3)	1.14976 (19)	0.0402 (8)
H15	0.6588	0.3553	1.1905	0.048*
C16	0.5766 (2)	0.2386 (3)	1.16216 (18)	0.0404 (8)
H16	0.5805	0.2028	1.2112	0.049*
C17	0.52435 (18)	0.2010 (2)	1.10260 (18)	0.0316 (7)
H17	0.4929	0.1398	1.1117	0.038*
N1	0.18306 (13)	-0.23758 (17)	0.99403 (13)	0.0272 (5)
N2	0.51787 (13)	0.24994 (17)	1.03256 (13)	0.0240 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

N3	0.49137 (13)	0.35332 (17)	0.89404 (13)	0.0246 (5)
01	0.45895 (11)	-0.10617 (16)	1.12228 (12)	0.0349 (5)
O2	0.35844 (13)	0.00840 (16)	1.15898 (12)	0.0387 (5)
O3	0.38972 (11)	0.04329 (13)	0.97871 (11)	0.0269 (4)
O4	0.30668 (14)	0.00132 (15)	0.87610 (11)	0.0356 (5)
O5	0.26467 (14)	0.13856 (16)	0.26104 (13)	0.0363 (5)
O6	0.36334 (13)	0.18725 (15)	0.81936 (12)	0.0311 (5)
H2W	0.3354	0.1325	0.8173	0.047*
H4W	0.2378 (19)	0.104 (2)	0.2948 (16)	0.055 (11)*
H3W	0.2908 (19)	0.097 (2)	0.2303 (16)	0.048 (10)*
H1W	0.3316 (19)	0.2383 (15)	0.808 (2)	0.053 (11)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0263 (3)	0.0223 (3)	0.0296 (3)	-0.00241 (15)	-0.00159 (16)	0.00010 (15)
C1	0.0208 (13)	0.0166 (13)	0.0296 (15)	0.0019 (10)	0.0021 (11)	-0.0009 (11)
C2	0.0206 (12)	0.0165 (13)	0.0236 (13)	0.0008 (10)	0.0036 (10)	-0.0017 (10)
C3	0.0200 (13)	0.0213 (14)	0.0268 (14)	0.0055 (10)	0.0052 (11)	-0.0015 (10)
C4	0.0291 (15)	0.0265 (14)	0.0183 (14)	0.0011 (12)	0.0033 (11)	0.0035 (11)
C5	0.0327 (15)	0.0307 (15)	0.0263 (15)	0.0007 (12)	-0.0020 (12)	0.0066 (12)
C6	0.0307 (15)	0.0261 (15)	0.0349 (17)	-0.0076 (12)	0.0011 (12)	0.0069 (12)
C7	0.0276 (14)	0.0230 (13)	0.0205 (13)	-0.0002 (11)	0.0004 (11)	0.0006 (11)
C8	0.0327 (15)	0.0342 (16)	0.0284 (15)	-0.0051 (12)	-0.0047 (12)	0.0009 (12)
C9	0.0442 (17)	0.0329 (16)	0.0269 (16)	-0.0037 (13)	0.0011 (13)	0.0070 (12)
C10	0.0533 (19)	0.0393 (19)	0.0379 (19)	-0.0221 (15)	0.0009 (16)	0.0075 (14)
C11	0.0441 (18)	0.0443 (19)	0.0359 (18)	-0.0251 (15)	-0.0066 (14)	0.0037 (14)
C12	0.0241 (13)	0.0203 (14)	0.0288 (15)	-0.0020 (11)	0.0012 (11)	-0.0037 (11)
C13	0.0208 (13)	0.0241 (14)	0.0251 (14)	0.0009 (11)	0.0012 (11)	-0.0027 (11)
C14	0.0327 (16)	0.0292 (15)	0.0356 (17)	-0.0083 (12)	-0.0054 (13)	-0.0012 (12)
C15	0.0382 (17)	0.048 (2)	0.0342 (17)	-0.0031 (15)	-0.0108 (14)	-0.0014 (14)
C16	0.0422 (18)	0.050 (2)	0.0290 (16)	0.0025 (15)	-0.0029 (14)	0.0112 (14)
C17	0.0298 (15)	0.0318 (16)	0.0333 (16)	-0.0024 (12)	0.0021 (13)	0.0077 (12)
N1	0.0258 (12)	0.0261 (13)	0.0298 (13)	-0.0037 (10)	-0.0015 (10)	0.0004 (10)
N2	0.0230 (11)	0.0234 (12)	0.0255 (12)	-0.0004 (9)	0.0011 (9)	-0.0001 (9)
N3	0.0241 (12)	0.0252 (12)	0.0246 (12)	-0.0033 (9)	-0.0002 (9)	0.0025 (10)
01	0.0242 (10)	0.0425 (12)	0.0380 (12)	0.0104 (9)	-0.0030 (9)	-0.0105 (9)
O2	0.0437 (12)	0.0366 (12)	0.0359 (12)	0.0109 (10)	-0.0016 (10)	-0.0147 (9)
03	0.0289 (10)	0.0221 (10)	0.0298 (10)	-0.0060 (8)	-0.0018 (8)	0.0018 (8)
O4	0.0497 (12)	0.0317 (11)	0.0255 (11)	-0.0131 (9)	-0.0087 (9)	0.0063 (8)
05	0.0472 (13)	0.0332 (12)	0.0285 (11)	0.0011 (10)	0.0065 (10)	0.0000 (10)
06	0.0346 (11)	0.0268 (11)	0.0317 (11)	-0.0041 (9)	-0.0044 (9)	-0.0007 (8)

Geometric parameters (Å, °)

Fe1—O1 ⁱ	2.1192 (19)	C9—C10	1.367 (4)
Fe1—O3	2.1478 (18)	С9—Н9	0.9300
Fe1—O6	2.194 (2)	C10—C11	1.350 (4)

Fe1—N2	2.224 (2)	C10—H10	0.9300
Fe1—N3	2.313 (2)	C11—C12	1.404 (4)
Fe1—N1 ⁱⁱ	2.361 (2)	C11—H11	0.9300
C1—O4	1.235 (3)	C12—N3	1.342 (3)
C1—O3	1.255 (3)	C12—C13	1.454 (4)
C1—C2	1.505 (4)	C13—N2	1.367 (3)
C2—C3	1.377 (4)	C13—C14	1.388 (4)
C2—C7	1.404 (4)	C14—C15	1.355 (4)
C3—C5	1.397 (4)	C14—H14	0.9300
C3—C4	1.514 (4)	C15—C16	1.380 (5)
C4—O2	1.241 (3)	С15—Н15	0.9300
C4—O1	1.264 (3)	C16—C17	1.367 (4)
C5—C6	1.397 (4)	С16—Н16	0.9300
С5—Н5	0.9300	C17—N2	1.316 (4)
C6—N1	1.312 (3)	С17—Н17	0.9300
С6—Н6	0.9300	N1—Fe1 ⁱⁱⁱ	2.361 (2)
C7—N1	1.337 (3)	O1—Fe1 ⁱ	2.1192 (18)
С7—Н7	0.9300	O5—H4W	0.824 (17)
C8—N3	1.318 (4)	O5—H3W	0.838 (17)
C8—C9	1.391 (4)	O6—H2W	0.8200
С8—Н8	0.9300	O6—H1W	0.837 (17)
Ol ⁱ —Fel—O3	89.83 (8)	С8—С9—Н9	120.7
O1 ⁱ —Fe1—O6	92.98 (8)	C11—C10—C9	118.4 (3)
O3—Fe1—O6	96.01 (7)	C11—C10—H10	120.8
O1 ⁱ —Fe1—N2	93.28 (8)	C9—C10—H10	120.8
O3—Fe1—N2	102.73 (8)	C10-C11-C12	120.2 (3)
O6—Fe1—N2	160.24 (8)	C10-C11-H11	119.9
O1 ⁱ —Fe1—N3	93.42 (8)	C12—C11—H11	119.9
O3—Fe1—N3	173.94 (8)	N3—C12—C11	121.5 (3)
O6—Fe1—N3	88.94 (7)	N3—C12—C13	115.8 (2)
N2—Fe1—N3	72.00 (8)	C11—C12—C13	122.7 (2)
O1 ⁱ —Fe1—N1 ⁱⁱ	173.18 (8)	N2-C13-C14	121.3 (2)
O3—Fe1—N1 ⁱⁱ	83.46 (7)	N2-C13-C12	117.2 (2)
O6—Fe1—N1 ⁱⁱ	86.54 (8)	C14—C13—C12	121.5 (3)
N2—Fe1—N1 ⁱⁱ	89.40 (8)	C15—C14—C13	118.4 (3)
N3—Fe1—N1 ⁱⁱ	93.37 (8)	C15—C14—H14	120.8
O4—C1—O3	124.6 (2)	C13—C14—H14	120.8
O4—C1—C2	116.7 (2)	C14—C15—C16	119.5 (3)
O3—C1—C2	118.8 (2)	C14—C15—H15	120.3
C3—C2—C7	117.3 (2)	C16—C15—H15	120.3
C3—C2—C1	123.4 (2)	C17—C16—C15	120.3 (3)
C7—C2—C1	119.3 (2)	С17—С16—Н16	119.9
C2—C3—C5	116.3 (2)	C15—C16—H16	119.9
C2—C3—C4	124.7 (2)	N2—C17—C16	121.1 (3)
C5—C3—C4	118.9 (2)	N2—C17—H17	119.5
O2—C4—O1	125.5 (3)	С16—С17—Н17	119.5

supplementary materials

O2—C4—C3	116.4 (2)	C6—N1—C7	115.5 (2)
O1—C4—C3	117.9 (2)	C6—N1—Fe1 ⁱⁱⁱ	123.53 (18)
C6—C5—C3	121.7 (3)	C7—N1—Fe1 ⁱⁱⁱ	120.76 (17)
С6—С5—Н5	119.2	C17—N2—C13	119.5 (2)
С3—С5—Н5	119.2	C17—N2—Fe1	122.96 (19)
N1—C6—C5	122.5 (3)	C13—N2—Fe1	117.49 (17)
N1—C6—H6	118.7	C8—N3—C12	117.1 (2)
С5—С6—Н6	118.7	C8—N3—Fe1	125.69 (18)
N1—C7—C2	126.7 (2)	C12—N3—Fe1	115.46 (17)
N1—C7—H7	116.7	C4—O1—Fe1 ⁱ	151.22 (18)
С2—С7—Н7	116.7	C1—O3—Fe1	124.97 (17)
N3—C8—C9	124.0 (3)	H4W—O5—H3W	109 (2)
N3—C8—H8	118.0	Fe1—O6—H2W	109.5
С9—С8—Н8	118.0	Fe1—O6—H1W	120 (2)
C10—C9—C8	118.7 (3)	H2W—O6—H1W	108.7
С10—С9—Н9	120.7		

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) -*x*+1/2, *y*+1/2, *z*; (iii) -*x*+1/2, *y*-1/2, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
O5—H4W···O4 ^{iv}	0.824 (17)	2.02 (2)	2.827 (3)	168 (3)	
O5—H3W…O2 ^v	0.838 (17)	1.942 (17)	2.779 (3)	176 (3)	
O6—H1W····O5 ^{vi}	0.837 (17)	2.031 (18)	2.859 (3)	170 (4)	
Symmetry codes: (iv) $-x+1/2$, $-y$, $z-1/2$; (v) x , y , $z-1$; (vi) x , $-y+1/2$, $z+1/2$.					

05

